Intersecting Chord Theorem

Have we crossed paths before?

This one is really easy, but really important. The Intersecting Chord Theorem says that if two chords intersect (that's cross each other) inside a circle, then the products of their segments are equal. Huh? A picture's worth a thousand words. So, instead of boring you with one-thousand

words...

ab=cd

Here are a couple of examples.

Ex. 1. Find x.

3x=6*2

Ex. 2. Solve for x.

2(x+4)=1(x+10)2x + 8 = x + 5-x -xX+8=10 -8 -8 x=2

A <u>Tangent</u> is a line that intersects the exterior of the circle in exactly one spot. This spot is called the

Point of Tangency.

If two tangents intersect outside a circle then the distances from the intersecting point to the points of tangency are equal....

Let's look at examples of this...

Ex. 3. AB=8 Find AC.

Ex. 4. EF=x+3, EG=2x-5. Solve for x.

EF=EG X+3=2X-5 -X 3=x-5 +5 +5 8=X

Let's practice...

Find x...

1.

3.

5.

7.

12.

4

6

8.

Bubble all the correct answers from above. Don't bubble incorrect answers.

 $\bigcirc 8 \quad \bigcirc 4.85 \ \bigcirc 4 \quad \bigcirc 19.5 \ \bigcirc 1.5 \quad \bigcirc 8.67 \ \bigcirc 4.5 \quad \bigcirc 16.71 \ \bigcirc 19 \quad \bigcirc 6 \quad \bigcirc 3 \quad \bigcirc 2 \quad \bigcirc 2 \quad \bigcirc 18$

9.

11.

13.

15.

10.

12.

14.

16.

Bubble all the correct answers from above. Don't bubble incorrect answers.

 O22
 O11
 O6
 O8
 O13.5
 O10.5
 O15
 O5
 O4.39
 O85
 O3.29
 O58
 O93
 O4.67